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Abstract: Recently, homologous recombination deficiency (HRD) has become a new target
for hereditary cancers. Molecular-based approaches for hereditary cancers in the clinical
setting have been reviewed. In particular, the efficacy of the PARP inhibitor has been
considered by several clinical trials for various kinds of hereditary cancers. This indicates
that the PARP inhibitor can be effective for any kind of BRCA mutated cancers, regardless of
the organ-specific cancer. Homologous recombination deficiency (HRD) has become a new
target for hereditary cancers, indicating the necessity to confirm the status of HRD-related
genes. ARID1A, ATM, ATRX, PALB2, BARD1, RAD51C and CHEK2 are known as HRD-
related genes for which simultaneous examination as part of panel testing is more suitable.
Both surgical and medical oncologists should learn the basis of genetics including HRD.
An understanding of the basic mechanism of homologous repair recombination (HRR) in
BRCA-related breast cancer is mandatory for all surgical or medical oncologists because
PARP inhibitors may be effective for these cancers and a specific strategy of screening for
non-cancers exists. The clinical behavior of each gene should be clarified based on a large-
scale database in the future, or, in other words, on real-world data. Firstly, HRD-related
genes should be examined when the hereditary nature of a cancer is placed in doubt after
an examination of the relevant family history. Alternatively, HRD score examination is a
solution by which to identify HRD-related genes at the first step. If lifetime risk is estimated
at over 20%, an annual breast MRI is necessary for high-risk screening. However, there are
limited data to show its benefit compared with BRCA. Therefore, a large-scale database,
including clinical information and a long-term follow-up should be established, after which
a periodical assessment is mandatory. The clinical behavior of each gene should be clarified
based on a large-scale database, or, in other words, real-world data.
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1. Introduction
For the past three decades, hereditary breast and ovarian cancer (HBOC) has been a

major topic for breast surgeons [1,2].
BRCA genes are a subset of homologous recombination deficiency (HRD)-related

genes, which are associated with an increased risk of developing breast, ovarian, and
other cancers. The BRCA1 and BRCA2 genes code for proteins that play a critical role in
DNA repair, specifically in the process of homologous recombination. When these genes
are mutated or altered, cells become more susceptible to DNA damage and can acquire
additional mutations that may lead to the development of cancer.
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Individuals with inherited mutations in BRCA1 or BRCA2 have a significantly higher
risk of developing breast and ovarian cancers compared with the general population. The
estimated cumulative risks of breast cancer by age 70 in two meta-analyses were 55%
to 65% for carriers of BRCA1 pathogenic variants and 45% to 47% for carriers of BRCA2
pathogenic variants [3]. In addition, these mutations are associated with an increased risk of
developing other types of cancers, such as pancreatic and prostate cancers. The cumulative
risks to those at age 80 are reported as being approximately 2.5% for pancreatic cancer for
both BRCA1 and BRCA2 carriers, and 27% for prostate cancer for BRCA2 carriers [4].

Surveillance procedures and intervals for BRCA mutation carriers is well summarized
in the NCCN guideline. At age 18, it is recommended to develop breast awareness, and a
clinical breast exam is recommended every 6 to 12 months for those at the age of 25 years.
Above the age of 25, annual breast MRI surveillance is recommended [5–9].

Furthermore, risk reduction mastectomy (RRM) or risk reduction salpingo-oophorect-
omy (RRSO) should be considered for pathogenic BRCA mutation careers [10,11].

Overall survival was longer with RRSO compared with no RRSO (HR 0.32, 95% CI 0.19
to 0.54; p < 0.001 [11]). The efficacy of those prophylactic surgeries has been proven through
several case-control studies [12] and are recommended in clinical practice guidelines
worldwide [13,14].

The pathogenic alteration of BRCA1/2 has several prophylactic procedures by which
to develop a feeling of benefit to each client.

BRCA testing was almost never undertaken in Asian countries in the past 20 years;
however, it has become very popular at present and the ratio of hereditary breast cancers
has been found to be almost the same [15,16].

These days, the value of genetic testing without BRCA1/2 has gradually become
clarified in Asia [17–25].

The homologous recombination repair system is a key pathway for repairing double-
stranded DNA breaks and is essential for maintaining genomic stability. HRD-related
genes play a crucial role in this process.

Mutations in several HRR systems can lead to HRD and impaired DNA repair, which
can increase the risk of cancer and affect the response to certain cancer therapies. Some
of the most well-known HRD-related genes include BRCA1, BRCA2, RAD51 (Radiation
Sensitive 51), ATM, and PALB2. These genes are often associated with hereditary breast and
ovarian cancer syndromes, as well as other cancer types. TP53 and PTEN can also cause
hereditary breast cancer, but they are less common than BRCA1 and BRCA2 mutations.
Moreover, the presence of variants of unknown significance (VUS) is still higher than in
BRCA1/2. Long-term follow-up of these cancers and the maintenance of their databases are
very important to the understanding of their pathogenicity.

HRD testing is becoming an increasingly important tool in cancer treatment decision-
making, particularly for patients with breast, ovarian, and prostate cancers. Testing for
HRD status can help identify patients who may benefit from certain targeted therapies,
such as those associated with PARP inhibitors. The mechanism of resistance to PARP
inhibitors has been considered and a newer type of PARP inhibitor has been developed.
Combination therapy with other agents has been verified under clinical trials. The scope of
PARP inhibitors in the near future will be mentioned in this review.

2. Multi-Gene Panel Testing for Hereditary Breast Cancer
Nowadays, there are several other genes which cause hereditary breast cancer that

have been found by multi-gene panel testing [11,26,27]. The genes related to the penetrance
of breast cancer are divided into three groups (high, moderate and low). The high-risk
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genes are BRCA1/2, PALB2, P53, PTEN, CDH1 (Cadherin 1) and STK11. They have an above
50% lifetime probability of breast cancer occurrence.

The moderate risk genes are ATM, CHEK2, BRIP1 and RAD51. They have an above 20%
lifetime risk of breast cancer occurrence and surveillance using breast MRI is recommended;
however, RRM is thought to be an overtreatment for this in the new guideline.

P53 is a tumor suppressor protein that plays a critical role in preventing the develop-
ment and progression of cancer. It acts as a checkpoint, detecting damaged DNA and either
triggering DNA repair or inducing cell death to prevent the propagation of damaged DNA.
Mutations in the P53 gene that encodes for the P53 protein are associated with an increased
risk of cancer development and progression, as well as resistance to chemotherapy and
radiation therapy. Strategies to restore or enhance P53 activity are currently being explored
as potential cancer therapies [28].

The phosphatase and Tensin homolog (PTEN) is a gene that produces a protein that
helps regulate the growth and division of cells in the body. The PTEN gene is found
on chromosome 10 and is a tumor suppressor gene. Mutations in the PTEN gene have
been linked to the development of a variety of cancers, including breast, prostate, and
thyroid cancer, as well as Cowden syndrome, a genetic disorder characterized by multiple
tumor growths in various parts of the body. The PTEN gene is also involved in many
biological processes beyond cancer, such as cell migration, cell survival, and response to
stress. Therefore, scientists continue to study the role of the PTEN gene in order to gain a
greater understanding of its impact on human health [29]. PTEN mutations may overlap
with other mutations, including human epidermal growth factor receptor 2 (HER2) and loss
of a single PTEN allele has been shown to accelerate tumorigenesis in HER2-overexpressing
breast tumors [30]. PTEN loss and PTEN-independent activation of the PI3K pathway have
been identified as major determinants of trastuzumab resistance in preclinical models and
also in clinical samples [31].

The CDH1 gene codes for a protein called E-cadherin, which is involved in cell adhe-
sion in tissues. E-cadherin is a protein that helps cells stick together to form tissues and
organs. It is particularly important in epithelial cells, which line the surfaces of organs
and structures within the body, such as the skin and the linings of the lungs, liver, and
stomach. Mutations in the CDH1 gene have been associated with a higher risk of certain
types of cancer, particularly stomach (gastric) cancer and lobular breast cancer, which is
known as hereditary diffuse gastric cancer syndrome. Histologically, this syndrome is
characterized by the diffuse presence of signet ring cells and poorly connective carcinoma
cells with in situ or pagetoid features in the gastric mucosa. Testing for mutations in the
CDH1 gene may be recommended for individuals with a personal or family history of these
types of cancer [32]. In a recent cohort study of 394 women with lobular breast carcinoma
(LBC), 15 germline CDH1 variants were identified in 15 families with hereditary lobular
breast carcinoma (HLBC); 40.0% were pathogenic or likely pathogenic (P/LP). The overall
frequency of P/LP CDH1 variants was 1.5% and was associated with age of 45 years or
younger at LBC diagnosis and positive family history of BC. Therefore, the identification of
P/LP germline CDH1 variants in young women with LBC with (or without) family history
of BC, not fulfilling the classic CDH1 genetic screening criteria, may provide an indication
to test for CDH1 gene [33].

STK11 is a serine/threonine kinase that regulates cell polarity and energy metabolism
and functions as a tumor suppressor. Mutation in this gene is well known as a cause
of PTEN mutations that may overlap with other mutations, including human epidermal
growth factor receptor 2 (HER2) and loss of a single PTEN allele has been shown to
accelerate tumorigenesis in HER2-overexpressing breast tumors, Peutz–Jeghers syndrome,
as well as with skin, pancreatic, and testicular cancers.
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Homologous recombination deficiency (HRD) has become a new target for hereditary
cancers, which indicates the necessity of confirming the status of HRD from the aspect of
the efficacy of the PARP inhibitor. ARID1A, ATM, ATRX, PALB2, BARD1, RAD51C and
CHEK2 are known as HRD-related genes. Some of these have already shown efficacy with
regard to the PARP inhibitor (Figure 1).
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PALB2 is a gene that stands for Partner and Localizer of BRCA2. It is associated with
an increased risk of breast and ovarian cancer. Mutations in the PALB2 gene can disrupt the
normal functioning of proteins involved in DNA repair, which can lead to a higher risk of
developing cancerous cells.

The PALB2 gene is often tested in individuals with a family history of breast or ovarian
cancer, especially those with a known BRCA1 or BRCA2 mutation. It is important to
consult with a medical professional or genetic counselor for more detailed information and
guidance regarding genetic testing and screening [34].

The Ataxia Telangiectasia Mutated (ATM) gene is a gene that codes for a protein
involved in cell cycle regulation and DNA repair. Mutations in this gene can cause a
rare genetic disorder known as Ataxia telangiectasia (A-T), which is characterized by
neurological symptoms, a weakened immune system, and an increased risk of developing
certain types of cancer. The protein produced by the ATM gene helps to activate cell cycle
checkpoints in response to DNA damage, allowing time for DNA repair to occur before
the cell continues to divide. In individuals with A-T, the ATM protein is either absent
or not functional, which can lead to an accumulation of DNA damage and an increased
risk of developing cancer. People with mutations in the ATM gene may also have an
increased sensitivity to radiotherapy and certain chemotherapeutic agents used in cancer
treatment [35–37].

Checkpoint kinase 2 (CHEK2) is a gene that codes for a protein involved in cell cycle
regulation and DNA repair. It is located on chromosome 22q12.1 and is also known as
CHEK2. Mutations in the CHEK2 gene have been linked to an increased risk of developing
certain types of cancer, including breast, prostate, and colorectal cancer. Individuals with
mutated CHEK2 have an increased risk of developing cancer at a young age and may
benefit from increased cancer surveillance and preventative measures. Testing for CHEK2
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mutations may be recommended for individuals with a family history of cancer or other
risk factors [38,39].

The RAD51 gene codes for a protein called RAD51, which plays a crucial role in DNA
repair. RAD51 is involved in homologous recombination, which is a process by which
damaged DNA strands are repaired using the information from an undamaged duplicate
copy of the DNA. Homologous recombination is an essential DNA repair mechanism that
helps prevent the accumulation of mutations and the development of cancer. Mutations
in the RAD51 gene have been linked to an increased risk of breast, ovarian, and other
cancers [39].

The BRIP1 gene, also known as BRCA1-Interacting Protein C-terminal Helicase 1, is
involved in DNA repair and maintenance of genomic stability. It is important for individu-
als with a family history of breast or ovarian cancer to consider genetic testing for BRIP1
mutations in order to assess their risk and make informed medical decisions [40]. Long-
term follow-up is warranted to judge what kind of prophylactic strategy is appropriate
for BRIP1.

The cost of genetic testing has become less expensive and the results are more rapidly
obtained. Therefore, long-term follow-up data are warranted in order to judge what kind
of prophylactic strategy is appropriate for reasonable multi-gene panel testing [41–45]. The
lifetime risk of breast cancer caused by each gene has gradually been clarified.

However, the other genes, beyond BRCA1/2, which are supposed to be the cause of
hereditary breast cancer have a much higher frequency of variants of uncertain significance
(VUS) [46].

Long-term follow up and the development of an associated database are warranted to
clarify the necessity of RRM or breast MRI [47,48].

The new guideline for ASCO, stated in January 2024, is as follows:

• Offer BRCA1/2 testing to all patients diagnosed with breast cancer at or below age 65.
• Testing for other high penetrance genes, such as PALB2, TP53, PTEN, STK11, and

CDH1, should be offered to appropriate patients, as mutations in these genes could
inform medical treatment, influence surgical decision making, refine estimates of
second primary cancer risks, and inform family risk assessment.

• Testing for moderate penetrance genes, such as ATM, CHEK2, RAD51C, RAD51D and
BARD1, may be offered to appropriate patients who are undergoing BRCA1/2 testing.

• While mutations in these genes may inform the risks of second primary cancer or family
risk assessment, they currently offer no treatment benefits for breast cancer patients.

• Nowadays, the genes relating to homologous repair recombination (HRR) divide into
one group, known as homologous repair deficiency (HRD), that refers to a dysfunction
of HRR, or, in other words, to a group for which the PARP inhibitor will have the
possibility of efficacy.

Recently, multi-gene panel testing has become more common and the etiological
data associated with them has gradually been collected, one of the solutions to collect
the worldwide data is the I-CARE project conducted by a group at Vanderbilt university.
I-CARE is a registry of individuals interested in participating in inherited cancer research,
through which data and samples are collected to contribute to research. Participants are also
provided with ongoing research and clinical updates and informed about other research
opportunities for which they might be eligible. Participants are recruited from all over the
world. There is no cost to participate, and all materials can be completed online.

One of the studies this group has conducted was focused on PALB2, ATM, and CHEK2
mutations in order to evaluate breast cancer treatment and characteristics by conducting
additional tumor genomic studies [49].
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3. Poly (Adenosine Diphosphate-Ribose) Polymerase Inhibitors (PARP
Inhibitor) for Hereditary Breast Cancer

Synthetic lethality is a genetic concept that describes a situation in which two muta-
tions, each of which is not lethal by itself, cause cell death when combined. PARP inhibitors
(PARPis) are drugs that exploit synthetic lethality to target cancer cells that have defects
in DNA repair pathways, such as those caused by mutations in BRCA1 or BRCA2 genes.
PARPis block the activity of PARP enzymes, which are involved in repairing single-strand
DNA breaks (SSBs). When PARPis are used in cells that have normal homologous recom-
bination (HR) repair, the SSBs can be fixed by HR. However, when PARP inhibitors are
used in cells that have impaired HR repair, the SSBs accumulate and become double-strand
breaks (DSBs), which are more lethal and difficult to repair. This leads to genomic instability
and cell death in the cancer cells, while sparing the normal cells [50].

PARP inhibitors have been used for metastatic breast cancers for several years [51,52].
PARP inhibitors are a class of drugs that target the PARP enzymes in cells, which play

a critical role in DNA repair. These inhibitors work by blocking the activity of PARP, which
leads to the accumulation of DNA damage and ultimately triggers cell death in cancer cells.

PARP inhibitors have become a game-changer in cancer treatment, particularly in
cancers with BRCA mutations, which are more susceptible to DNA damage. Clinical trials
have shown impressive results in ovarian, breast, prostate, pancreatic, and other cancers,
where PARP inhibitors have led to prolonged survival rates [53–57].

The use of PARP inhibitors in combination with other treatments, such as chemother-
apy and immunotherapy, is also being explored as a way by which to increase treatment
effectiveness and overcome drug resistance.

However, like all treatments, PARP inhibitors can have side effects, including nausea,
fatigue, and anemia. Patients should discuss the risks and benefits of PARP inhibitors with
their healthcare providers.

Overall, PARP inhibitors are a promising new class of cancer treatments that provide
hope and new options for patients with difficult-to-treat cancers.

Recently, Olaparib, has become a PARP inhibitor added as part of a standard regimen
for BRCA1 or BRCA2 germline pathogenic, or likely pathogenic, variants and high-risk
clinicopathological factors which had received local treatment and neoadjuvant or adjuvant
chemotherapy [58].

The long-term effect of adjuvant Olaparib is interesting in terms of the necessity of
RRM or RRSO. The scope of Olaparib has become wide enough to include metastatic
pancreatic cancer and metastatic castration-resistant prostate cancer, although its approval
status varies by country; for example, in Italy, Olaparib is no longer subsidized for patients
with metastatic pancreatic cancer. This means that PARP inhibitors can be effective for
BRCA mutated cancers regardless of the organ-specific cancer.

HRD has become a new target for metastatic cancers, which indicates the necessity of
confirming the status of HRD-related genes [59–63], with ARID1A, ATM, ATRX, PALB2,
BARD1, RAD51C and CHEK2 being the HRD-related genes for which simultaneous exami-
nation as part of panel testing has been shown to be more suitable [64,65].

Confirming the status of HRD using cancerous tissue is becoming the standard when
determining the indication of a PARP inhibitor in ovarian cancer [66–68].

In recent years, several mechanisms of resistance have been reported. One of the
mechanisms of resistance of PARP inhibitors, the restoration of function by BRCA1/2
secondary mutation (reversion mutation), has attracted attention [69]. Reversion mutation
has been reported to occur in various kinds of cancers and its solution is an urgent matter at
present [70]. Secondly, replication fork stabilization is another cause of resistance, one which
can be caused by proteins like the Fanconi anemia group D2 (FANCD2) protein, SNF2-
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Related Chromatin Remodeling Annealing Helicase (SMARCAL1), Helper T-Lymphocyte
Frequency (HTLF), and Zinc Finger RANBP2-Type Containing 3 (ZRANB3). Thirdly,
loss of the 53BP1–RIF1–REV7–Shieldin axis, which reactivates resection and homologous
recombination (HR) in BRCA1-deficient cells is thought to be another reason for resistance.
Lastly, increased drug efflux, which is caused by overexpression of P-glycoprotein (P-gp)
efflux pumps and which is often seen during conventional chemotherapy, is also a cause
of resistance.

Research on resistance mechanisms to PARP inhibitors is ongoing. Some ongoing trials,
such as the NEO study and ARIEL 2, are seeking to identify predictors of response and over-
come resistance to PARP inhibitors. These trials have shown promising results at present.
On the other hand, a partner trial addition of Olaparib to neoadjuvant chemotherapy to
TNBC with BRCA wild type has shown no benefit.

4. Surveillance for Other Cancers
Unaffected male cancers can be found by triggering BRCA-mutated breast cancer in

patients [71].
Because there are high-risk forms of prostate cancer, annual PSA monitoring should be

used for its early detection [72], as should magnetic resonance cholangio-pancreatography
(MRCP). There is a research program which can adapt an MRI screening protocol for
pancreatic cancer, which is to be performed in conjunction with breast MRI screening in
BRCA positive individuals [73,74]. Therefore, the role of genetic counsellors has become
more important than ever when seeking to refer each individual to a proper department at
the right time.

In one case-control study of 63,828 patients with 14 common cancer types and
37,086 controls in Japan, pathogenic variants in BRCA1 were associated with biliary tract
cancer, in BRCA2 with esophageal cancer, and in BRCA1/2 with gastric cancer [75]. This
means that annual surveillance for the gastrointestinal tract might be considered for BRCA1
or 2 mutated cancers [76].

5. Risk -Stratified Screening for Breast Cancer in the Future
As previously stated, multi-gene panel testing will soon become the standard. Ad-

ditionally, the testing criteria will become wider and cover the other hereditary can-
cers [70,72,73,75,77,78].

Recently, polygenic risk scores (PRSs) have been used to stratify women according to
their risk of developing primary invasive breast cancer [79–81]. Several studies are ongoing
at present. Risk-stratified screening for breast cancer is anticipated in the future [82–84].

6. Significance of Multi-Disciplinary Approach
BRCA1/2 pathogenic mutation causes not only breast or ovarian cancer but also

prostate or pancreatic cancer. Therefore, periodic communication between multiple fields is
necessary and the key person for multi-disciplinary communication is the genetic counselor
or advanced nurse practitioner [85–91].

7. Conclusions
An understanding of the basic mechanism of HRR in BRCA-related breast cancer is

mandatory for all surgical or medical oncologists because PARP inhibitors may be effective
for cancers and for specific strategies of screening for non-cancers. In the future, the clinical
behavior of each gene should be clarified based on large-scale databases, or, in other words,
real-world data.
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Firstly, HRD-related genes should be examined in cases when the hereditary nature of a
cancer is cast in doubt through the examination of the relevant family history. Alternatively,
HRD score examination can be used to identify HRD-related genes at the first step. If
lifetime risk is estimated to be over 20%, annual breast MRI is necessary as a form of
high-risk screening. However, there are limited data to show its benefits when compared
with BRCA. Therefore, a large-scale database, including clinical information, is mandatory
(Figure 2).
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